
www.manaraa.com

Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

January 2015

Evaluating Targeted And Immunomodulatory
Therapies For Melanoma In A Genetically
Engineered Mouse Melanoma Model
Billy Lockhart

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Lockhart, Billy, "Evaluating Targeted And Immunomodulatory Therapies For Melanoma In A Genetically Engineered Mouse
Melanoma Model" (2015). Yale Medicine Thesis Digital Library. 1994.
http://elischolar.library.yale.edu/ymtdl/1994

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F1994&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F1994&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F1994&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F1994&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/1994?utm_source=elischolar.library.yale.edu%2Fymtdl%2F1994&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


www.manaraa.com

	   	  

	   	   	  

 

 

 

 

Evaluating targeted and immunomodulatory therapies for melanoma in a 

genetically engineered mouse melanoma model 

 

 

 

 

A Thesis Submitted to the Yale University School of Medicine in Partial Fulfillment 

of the Requirements for the Degree of Doctor of Medicine 

 

By Billy J. Lockhart 

2015 

 

  



www.manaraa.com

	   	  

	   	   	  

Abstract 

EVALUATING TARGETED AND IMMUNOMODULATORY THERAPIES FOR 

MELANOMA IN A GENETICALLY ENGINEERED MOUSE MELANOMA MODEL. 

Billy J. Lockhart, Marcus Bosenberg. Department of Dermatology, Yale 

University, School of Medicine, New Haven, CT. 

Melanoma therapy has changed rapidly due to the emergence of new therapies: 

MAPK-pathway targeted drugs and immunomodulatory agents. Given the relative 

success of these new individual drugs, this work set out to evaluate and develop 

effective melanoma treatments using combination therapies in a preclinical 

mouse melanoma models. Therapies tested include BRAF kinase inhibition in 

combination with: immune checkpoint inhibitors anti-CTLA4, anti-PDL1, and with 

the topical TLR7/8 agonist imiquimod. Drugs efficacies were tested in established 

melanomas in a conditional inducible mouse melanoma model based on 

activation of Braf and beta catenin and loss of Pten.  BRAF inhibition in 

combination with anti-CTLA-4/anti-PD-L1 was not more effective than BRAF 

inhibition alone in retarding tumor growth or prolonging survival in these studies. 

Treatment with imiquimod significantly retarded tumor growth and increased 

survival. Imiquimod-treated tumors show increased macrophage infiltration, but 

not increased intratumoral T lymphocytes. Further work remains to identify 

effective, synergistic drug combinations in preclinical models.   
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Introduction 

Melanoma, a cancer that arises from melanocytes, among the skin cancer 

possesses the highest morbidity and mortality. In the United States, it is 

estimated that 76,690 cases of melanoma and 9,480 deaths due to melanoma 

occurred in 2013 (1). Melanoma incidence predominates in countries with 

conjunction of fair-skinned ethnic populations and high UV light exposure, and 

global incidence of melanoma continues to rise (2): 132,00 new cases are 

diagnosed world-wide and an estimated 48,000 persons die from advanced 

melanoma across the globe each year (3) (4). From 1950 to 2000, a national 

cancer database documented increases of 619 percent in annual diagnoses of 

cutaneous melanoma and 165 percent in annual mortality from 1950 to 2000 (5).  

At the initial diagnosis of a primary melanoma, the depth of the primary lesion is 

used to predict patient survival. For instance, survival at 10 years for a melanoma 

less than 1.00 mm in depth is greater than 90% (6). However, once melanoma 

has metastasized, the standard of care treatments offer little in the way of long 

term benefit:  a 2009 report estimated one-year survival based on location of 

melanoma spread as high as 62% and as low as 33% (6). Thus, high mortality 

rates associated with unresectable or metastatic melanoma persists, and given 

the high mortality rates and the relatively young age at which disease often 
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occurs, melanoma skin cancer was the second leading causes of lost productive 

years among cancers (5). 

  

Current therapeutic landscape 

Local Excision of Primary: 

If melanoma is diagnosed early, standard treatment involves wide local excision 

+/- sentinel lymph node biopsy based on thickness, ulceration status and a 

melanoma specific depth level known as the Clark level (5). High dose 

administration of Interferon alfa-2b, a type1 interferon that activates both innate 

and adaptive immune responses, has been studied as an adjuvant therapy in 

patients who have high-risk prognostic factors upon local melanoma excision. 

Multiple studies documented improvement in relapse-free survival, and two 

studies showed significantly improved overall survival among patients receiving 

high-dose interferon alfa-2b, and these reports lead to FDA approval of this 

treatment for patients whose initial primary lesions are greater than 4 mm in 

thickness (i.e., stage IIB or IIC) or for melanoma that involves a regional lymph 

node(s) excised during sentinel lymph node biopsy (i.e., stage III) (5). However, 

upon longer follow-up of these clinical trials, a significant long-term overall 

survival due to adjuvant interferon alfa-2b was not observed (7).  
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Targeted Cancer Therapies 

Note again that a relatively small tumor of a depth slightly larger than 1 mm has a 

high metastatic potential. It is this metastatic disease that causes nearly all 

melanoma-associated mortality. Until recently, no therapy for advanced 

melanoma resulted in a significant increase in median overall survival. 

Dacarbazine, an alkylating agent first approved in 1975, is associated with 

overall survival of 5.6 to 7.8 months, and had been the mainstay of 

chemotherapy treatment until recently (8) (9). However, recent translational 

research in the field of melanoma therapeutics has yielded a string of new FDA 

approvals and large center clinical trials of several new agents. 

 

Building on the success of rational drug design in other cancers, a new class of 

protein inhibitors that target key signaling cascades essential to melanoma 

growth has emerged. The BRAF gene encodes an intracellular serine/threonine 

kinase in the Raf family, B-raf, which has a primary role in mitogen signaling 

pathways. The BRAF gene is mutated in approximately 50% (40-60%) of human 

melanomas, and these mutations are predominately of the activating substitution 

type, the majority characterized as BRAFV600E(~90%)  (10). This mutation results 

in constitutive downstream activation of the mitogen-activated protein kinase 

(MAPK) pathway, contributing to melanoma development and growth. 

Vemurafenib was the first of the new class of BRAF inhibitor approved in 2011 for 

advanced melanoma with BRAFV600 mutations. The drug is able to induce potent, 
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specific inhibition of mutated BRAF protein, providing for significant, often 

dramatic, responses in treated patients and significant increases in progression 

free survival and overall survival. Dabrafenib is a newer BRAF inhibitor and has 

also been shown to improve response rates, progression-free and overall 

survival, significantly compared to chemotherapy (11, 12). Still others are in 

development. However, in the vast majority of patients, the initial response to this 

targeted inhibition is followed by the successive development of a total BRAF 

inhibitor resistance; it appears regularly in approximately six to nine months (12, 

13). Some evidence suggests that that reactivation of the MAPK pathway may 

play a key role in the overcoming of BRAF inhibition in patients treated with these 

drugs (12). 

 

Not surprisingly, another new class of targeted protein inhibitors target MEK, a 

kinase that is downstream of Raf kinases in the MAPK pathway. Trametinib, a 

MEK inhibitor, has recently been FDA approved as a monotherapy in melanoma, 

and was associated with a survival advantage as compared with chemotherapy 

(14). In results that bear similarity to those of the BRAF inhibitors class of agents, 

objective response rates are initially high with MEK inhibitors, but the response is 

not durable, and resistance to therapy emerges within 6-18 months in most 

cases (14).  
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Two phase 3 trials published in 2014 tested whether the combination of these 

two classes--the MEK and BRAF inhibitors, i.e. dabrafenib or vemurafenib plus 

trametinib--would improve outcomes and response duration compared with 

BRAF inhibition, vemurafenib or dabrafenib, monotherapy (12, 15). Robert et al. 

described evidence that the combination of dabrafenib plus trametinib 

significantly improved overall survival in previously untreated patients with BRAF 

V600E or V600K mutation positive metastatic melanoma without increased 

overall toxicity: the median progression free survival was 11.4 months in the 

combination vs. 7.3 in vemurafenib only group (15). The authors concluded that 

by combining trametinib with dabrafenib “results in a significant delay in the 

emergence of resistant, and longer progression-free survival, with a longer 

median progression-free survival than with dabrafenib alone… and is superior to 

vemurafenib monotherapy with regard to all efficacy end points, including overall 

survival, with no additional overall toxicity (15).” Long et al describe a similar trial 

comparing the same combination to dabrafenib plus placebo: the median 

progression-free survival 9.9 vs 8.8 months respectively, and the two groups had 

nearly identical objective response rates to the Robert et al study (12, 15). While 

the data supported the authors’ claim that the combination has better response 

rates than anti-BRAF monotherapy, ~40% of patients w/BRAFV600 mutation did 

not benefit from the combination and the median improvement in progression 

free survival was only four months versus vemurafenib monotherapy and only 

one month versus dabrafenib monotherapy. This evidence also demonstrates 
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that resistance to BRAF/MEK inhibition occurs in the nearly all cases, indicating 

that this approach will not cure a significant proportion of melanoma patients. 

 

Immune therapies 

Small molecule inhibitors targeted to driver mutations or essential pro-growth 

signaling pathways are one branch of the new therapies to emerge in the clinical 

arsenal against advanced melanoma in the last four years. The other branch can 

be broadly classified as immune-based therapies that harness the immune 

response to clear the aberrant cells. This branch is comprised of a cell-based 

therapy, monoclonal antibody-based immunomodulatory therapies, and Toll Like 

Receptor (TLR) agonists.  

TIL-based therapy 

The first, Adoptive T-cell therapy (ACT), consist of the isolation and then adoptive 

transfer of the autologous tumor-infiltrating lymphocytes (TILs) after significant 

ex-vivo expansion using various treated culture media. Long-term follow-up of 

patients who have been treated with tumor-infiltrating lymphocytes (TILs) for 

metastatic melanoma has demonstrated that a significant portion of those treated 

with this cell-based therapy experienced complete, durable tumor regression 

(16). A recent review cited a growing body of evidence that mutated gene 

products may act as the primary immunological targets of TILs that have been 

extracted and from melanomas and re-administered (16). Several recent clinical 
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trials studying TIL administration have taken place or are underway. One resulted 

in objective clinical responses in about 56% of the patients, and importantly with 

40% of those responders having complete response to the therapy (16, 17). The 

authors reported that 95% of the complete responders were long-lasting “i.e. 

ongoing after 64– 109 months of follow-up (16, 17).” Similar results have been 

achieved at other centers across the globe (16, 18, 19). ACT of TILs is therefore 

a life-saving therapy for those patients who respond to therapy, many of which 

have been purportedly cured. However, ~40-45% of patients do not respond, and 

the process of T cell maturation is time and labor intensive. In addition, a only a 

subset of metastatic melanoma patients can complete ACT, as many patients 

may not have a tumor suitable for extraction of TILS or the TILS do not grow 

adequately. As research centers continue to improve TIL treatments for 

melanoma, they will also test this platform in other types of cancer. 

Immunomodulatory Therapeutic Antibodies 

New advances in immunomodulatory therapeutic antibodies continue to redefine 

the landscape of melanoma therapy. Ipilimumab was the first in its class of 

immunomodulatory antibodies to be studied, and the first to show a survival 

benefit in advanced melanoma; it was first to be approved by the FDA in 2010. 

Ipilimumab is a monoclonal antibody that blocks the cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4).  CTLA-4 is a protein receptor found on the 

surface of T cells that binds to CD80 or 86 on antigen presenting cells; thus 

CTLA-4 signaling competes with CD28 signaling, and leads to T Cell inhibition, 
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thereby acting as a potent checkpoint in the immune response. Blocking CTLA-4 

leads to enhancement of antitumor activity. Ipilimumab has been show to 

improve the rate of survival at 1 and at 2 years, when compared to a peptide 

vaccine control, among previously treated patients with metastatic melanoma as 

well as among previously untreated patients who also received dacarbazine (9, 

20). Furthermore, long-term follow up of three recent Ipilimumab treatment 

groups reported 5 year survival rates between 13-25% with one the group 

following one protocol reporting a 17% complete response rate (21). However, 

the immune checkpoint blockade is a double-edged sword: high grade auto-

immune side effects (immune-mediated enterocolitis, hepatitis, dermatitis, and 

endocrinopathies) occur in approximately 1-6% of patients and in some cases 

result in discontinuation of the therapy (22). Ipilimumab monotherapy 

demonstrated the promise of immunomodulatory antibody therapies in the 

treatment of melanoma, but also suggested that there was room improvement.   

Another pathway in the immune system has seen application as a cancer 

therapeutic: the programmed death 1 signaling cascade. Expressed 

predominantly by T cells, programmed death-1 (PD-1) is a co-receptor. PD-1 

binds to its ligands, PD-L1 or PD-L2, in a process essential to the physiologic 

regulation of the immune system by acting as a negative signal that regulates    

T-cell activation and proliferation. Thus, a major function of the PD-1 signaling 

pathway is the inhibition of self-reactive T cells activity, which serves to guard 

against autoimmune diseases (8). Removal of the PD-1 pathway can 
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consequently produce a failure of immune tolerance, which ultimately could lead 

to the development of pathogenic autoimmunity (23). Conversely, tumor cells 

have co-opted the PD-1 pathway to evade immune surveillance (24, 25). 

Therefore, PD-1 pathway has become an attractive disruption target in cancer 

therapy. Several agents targeted to this pathway have been the subjects of 

recent experimental study: nivolumab, pembrolizumab, and lambrolizumab will be 

briefly discussed herein.  

 

Pembrolizumab, is an anti-PD-1 antibody that was FDA approved on the basis of 

an objective response rate of ~ 25% among patients with advanced melanoma 

(26).  Lambrolizumab, an anti-PD-L1 is currently in Phase 3 trials after a 

successful phase 2 trial in 2013 that showed response rates ~35%, with a 

durable response in the majority of patients and an overall median progression-

free survival that was longer than 7 months (27).  

The third agent, nivolumab, was the subject of several recent reports. Nivolumab 

is a fully human antibody also directed at inhibition of the programmed death 1 

(PD-1). In ipilimumab-refractory melanoma, nivolumab had higher rate of 

objective response then chemotherapy with dacarbazine (32% vs 11%): the 

nivolumab treated group had a one-year survival rate of 72.9% compared with 

42.1% with dacarbazine. This stage 3 study compared these two drugs in 

previously untreated BRAF-negative advanced melanoma. The median 

progression free survival was 5.1 months vs 2.2 and an objective response was 
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documented in 40% vs 14% of patients in the nivolumab and dacarbazine groups 

respectively (8).  

Nivolumab was also used in a Phase 1 trial in combination with ipilimumab with 

both a concurrent therapy treatment arm and a sequenced treatment arm (28). 

Reporting using strict response criteria, the objective-response rate in the 

concurrent-regimen group was 40% (with the authors stating that any clinical 

activity was observed in 65% of patient), while the objective response rate in the 

sequenced treatment arm was 20% (28). Given the serious auto-immune based 

adverse effects with ipilimumab alone, it is perhaps not surprising that high-grade 

adverse events (3 or 4) were reported in 53% of the patients who received 

concurrent therapy vs 18% in the sequenced group (28).  Of note, at the highest 

dosages with an acceptable level of adverse events, 53% of patients had an 

objective response that consisted of significant tumor reduction of  > or =80% 

(28). The two-year survival of the combined therapy cohort was 80%, far greater 

than historical non-treatment controls (~25%). 

TIL and Immunomodulatory therapeutic antibodies that target immune 

checkpoints have been established as clinically effective and for some may 

represent long-term remission (and possibly cure) from disease progression: a 

triumph of modern medicine in the battle against cancer. A similar pattern to the 

previously described new therapeutic options is reflected in these results: a 

subset of patients has significant improvement, especially as compared to 

previous standard of care chemotherapy. But substantial ground remains to be 
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covered: TIL, anti-CTLA-4, and anti-PD-1 inhibitor studies reveal large 

proportions of patients who do not respond to therapy, and to date no predictive 

biomarkers have been identified and some patients lack the appropriate T cells in 

their tumors to be candidates for TIL therapy. Current opinion is that response 

biomarkers may someday help to predict candidates who would benefit from 

therapy, but to date no such markers have been validated, e.g. prognostic role of 

for instance PD-L1 status has yet to be determined(8). 

 

Toll-like receptor agonists 

Chemical agents that exhibit the ability to potently activate the innate immune 

response have been tested and used as therapeutics to treat skin cancers. 

Particular attention has been focused upon Toll-like receptor (TLR) agonists in 

the family of compounds known as the imidazoquinolines, e.g. imiquimod and 

resiquimod, which activate TLR 7 and TLR 8 and consequently, induction of 

nuclear factor-kappa B (NF-κB) (29). Imiquimod, an agonist thought to act 

predominately at TLR 7, was originally approved for the treatment of actinic 

keratosis and external genital warts. The compound has been found to be 

efficacious for basal cell and squamous cell cancers, and the FDA subsequently 

approved the use of topical imiquimod for the treatment of superficial basal cell 

carcinoma and squamous cell carcinoma (30). Further studies, mostly case 

reports, have evaluated the potential usefulness of imiquimod as a topical 

treatment for dermal metastases of melanoma that are not readily managed with 
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surgery (29). However many of these reports included other treatment modalities, 

complicating a pure assessment of the efficacy of imiquimod.  

For instance A phase I/II clinical trial suggests that imiquimod effectively treats 

many superficial dermal and subcutaneous melanoma metastases (31). In point 

of fact, Imiquimod was combined with intralesional Bacille Calmette-Guerin 

(ILBCG) in order to induce regressions of a portion of lesions in patients with 

mixed dermal and subcutaneous disease. The authors’ conclusion was that 

imiquimod alone could be used to effectively control dermal disease, but 

subcutaneous disease was better treated in combination with ILBCG(31).  

Alternative mechanisms of actions of imiquimod, besides a TLR-mediated 

response, have been proposed. Several groups have published evidence that 

argues for high dose imiquimod directly triggering apoptosis induction of 

apoptosis via Bcl-2 and caspase activation (32, 33). Another report looked at the 

vehicle for Aldara, the non-generic formulation of imiquimod, which is known to 

cause psoriatic-like inflammation when applied to murine epidermis (33). The 

authors of this study concluded that the vehicle for the drug, citing evidence 

pinpointing the isostearic acid component, was sufficient to induce inflammation 

in cultured keratinocytes and drawing into question whether or not imiquimod was 

solely responsible for all the therapeutic activity seen clinically (34). However, 

multiple vehicle-controlled, double blind studies have shown imiquimod efficacy 

in treating non-melanoma skin cancers (35, 36). 
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A mouse model of melanoma 

 

In order to further explore research questions about the genetic basis of 

melanoma development, the formation of melanoma metastasis, and potential 

therapeutics, a novel mouse model has been developed to investigate specific 

genetic mutations within the melanocytes of mice by the Bosenberg lab. The 

melanoma mouse model referred to has been constructed from a transgenic 

mouse line, which was previously engineered and characterized to express a Cre 

recombinase-estrogen receptor fusion protein controlled by a melanocyte-specific 

tyrosinase promoter (Tyr::CreERT) (37). The mouse model’s genetically 

engineered system allows for the inducible recombination of genes that contain 

lox sites flanking targeting the relevant DNA sequences of known melanoma 

genetic hits. Targeted DNA excision is reproducibly induced by the application of 

topical 4-hydroxytamoxifen (4-OHT), an estrogen agonist that binds to the 

estrogen receptor fusion protein in a spatially and temporally restricted manner 

(38). Following the demonstration of functionality of the Tyr::CreERT lines, lox 

knock-in and knockout lines of genes relevant to human melanoma were 

acquired including Braf, Pten and Bcat. 

 As previously described, the B-raf serine/threonine kinase is one of the 

most commonly mutated genes known in human melanoma, with about 50% of 

melanomas containing activating mutations of BRAF (usually Braf V600E) (39). 

Martin McMahon’s lab at UCSF produced a knock-in allele of activated BRAF 
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(BRAFCA) that is phenotypically wild type but after Cre-mediated recombination 

produces a constitutively active allele that contains the V600E point mutation 

found in human melanomas. This recombinant gene product retains a single 

intronic 34bp loxP site and the activating point mutation, but otherwise resembles 

the wild type chromosome exactly (38).  

 Studies of human melanoma tumor samples have revealed that the Pten 

tumor suppressor is markedly reduced in about 30% of advance melanoma, but 

the Pten gene itself is only mutated in a small proportion of melanomas (40).  The 

Bosenberg lab acquired a Pten allele which has lox sites inserted so as to flank 

exon 5 (38).  Subsequently, various mouse genotypes have been actively 

generated: previous work in the lab analyzed 4-OHT-treated mouse cohorts in 

which these targeted genes, Braf and Pten, as well as others key melanoma 

genes (Cdkn2a, p53, etc.) have be manipulated individually and in 

combination(s). When the inductions of genetic recombination are performed with 

a relatively high concentration of topical 4-OHT (50mg/ml in DMSO) applied to 

the mouse on days 3, 5, and 7 of life, the inductions result in a widespread 

recombination of lox-containing alleles specifically in melanocytes. Induction of 

constitutively active BrafV600E construct in melanocytes results in formation of 

small melanocytic nevi that stop growing after 3-4 weeks (37). Other genetic hits 

that have been experimentally examined in this system have not yielded a 

markedly abnormal melanocytic phenotype when altered individually. In contrast, 

when combinations of key genes have been recombined using 4OHT induction, 
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these combinations have yielded useful tumorigenic and metastatic phenotypes. 

Induction of BrafV600E combined with loss of Pten yields a dramatic melanoma 

phenotype (Braf/Pten tumor model). When recombination is induced in 

melanocytes throughout the mice within the first week of postnatal life, greater 

that 10,000 melanomas form without detectable latency. In contrast, when 

recombination is induced locally by application of 2 µL 4-OHT solution on flank 

skin after weaning, localized melanomas form and grow to 1 cm3 in 6-8 weeks 

without fail. This model allows for the production of melanoma driven by 

mutations relevant to human melanoma in an immune competent setting. 

 

In addition to these two key gene targets in the melanoma mouse model, the 

Bosenberg lab developed a novel genetically engineered model based on the 

Braf/Pten model with the addition of an inducible gene product that results in the 

stabilization of beta catenin (Ctnnb1loxex3 ), resulting in constitutive activation of 

Wnt pathway signaling (41). This particular model, Braf/Pten/Ctnnb1, adds the 

activation of Wnt-pathway signaling in the context of Braf activation and Pten 

loss. As demonstrated by previous work in the Bosenberg lab, this triple gene 

combination results in >20 fold increase in lung and lymph node metastases after 

induction, and a 100 to 1000 fold increase in the expression of canonical 

melanoma differentiation antigens relative to the Braf/Pten model (41). 
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Preliminary Data 

 

The Braf/Pten mouse model therefore presents an opportunity to study the Braf 

inhibition in a preclinical animal model. Most BRAFV600E-mutant human 

melanomas respond to vemurafenib (10). The mechanism of either intrinsic or 

acquired resistance in BRAF-mutated melanomas to vemurafenib is variable, but 

includes activation of PDGFR signaling, IGF-1R signaling, or acquisition of 

mutations and other mechanisms that activate MAPK pathway signaling (42, 43). 

Loss of PTEN or increased PI3K activity has been hypothesized to be a 

mechanism of resistance to BRAF inhibitors. This was evaluated in the mouse 

melanomas by determining the dose response in vitro of Braf/Pten melanoma cell 

line—cell lines generated from tumor samples derived from induced mouse 

tumors—to the Braf inhibitor vemurafenib. The IC50s ranged between 200 and 

800nM in three lines, demonstrating that Pten loss does not necessarily mediate 

intrinsic resistance in this system (unpublished data). Furthermore, several 

resistant mouse melanoma lines were generated by chronic in vitro exposure to 

vemurafenib, with IC50 concentrations of >10 µM in resistant clones 

(unpublished data). This supports the hypothesis that the Bosenberg mouse 

Braf-driven melanoma models are responsive to BRAF inhibitors and that 

resistance to BRAF inhibitors which develops has features that resemble those 

seen in human vemurafenib-resistant melanomas; this melanoma mouse model 

represent a useful preclinical system for studying the effects of BRAF inhibitors.  
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In vivo experiments in the Bosenberg lab, in which the Braf inhibitor compound 

PLX4720 was administered in mouse chow, demonstrated that Braf inhibition 

resulted in reduced tumor growth. Overall survival endpoints (primary tumor 

volume >1 cm3 at the site of topical 4OHT induction, or secondary spread), were 

not reached in treated mice in greater than 12 months, verus rapid development 

of induced tumors to endpoint (~2 months) in untreated animal controls. In 

addition, histological evidence of growth arrest (reduced Ki67) and pathway 

inhibition (reduced pMek and pErk) was present in treated tumors following 4 and 

8 days of treatment (unpublished data).  

In addition to testing Braf inhibitors in this model, this system has also been the 

subject of immunomodulatory therapeutic antibody studies. This author’s 

predecessor in the Bosenberg lab, Laura Huang, conducted initial experiments 

on anti-mouse CTLA-4 antibodies as a treatment for induced tumor growth in the 

Bcat/Braf/Pten melanoma mouse model. Her analysis of this treatment showed 

no significant difference between untreated controls (n=12) and those receiving 

the antibody (n=5) in terms of percentage survival as measured to tumor size 

endpoint (44). Subsequently, a pilot study by Laura Huang consisting of a similar 

trial with anti-mouse PD-L1 antibodies on a cohort of mice (n=7) failed to show 

decreased tumor growth (unpublished data).  

 

Thus BRAF inhibition successfully treats mice with induced Braf/Pten/Bcat tumor 

growth, but single agent immune checkpoint blockade failed to stop or slow 
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Braf/Pten/Bcat tumor growth. This later preliminary data presented an 

experimental challenge to determining approaches to therapeutically effective 

immune checkpoint blockade; this observation was explored further in the 

experiments presented herein.  

 

Statement of Purpose 

 

BRAF inhibitors and immune therapies, including anti-CTLA4 and anti-PD1, have 

shown great clinical promise. Additionally, there is encouraging data about the 

ability of TLR agonists, e.g. imiquimod, to promote an effective immune response 

to tumors. Given the encouraging data from new human clinical therapeutic trials, 

there is a clear need to develop approaches that combine these treatment 

strategies. This is an obvious approach and despite a lack of preclinical data, 

human clinical trials of some of these combination therapies are underway, as 

described above (28). These trials will likely determine the efficacy of specific 

individual combination therapies; however, even with biopsy and biomarker 

correlation, the ability to evaluate the mechanism of why the combined therapies 

are effective (or not) is likely to be suboptimal. Prior and ongoing immunotherapy 

trials suggest that partial or complete responses will occur in a subset of patients, 

however to date it has been difficult to prospectively predict which patients will 

respond. In particular, it is difficult to make meaningful conclusions about the 

characteristics of melanomas that respond, as performing sequential biopsies or 
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controlling for tumor or immune genetics are not possible in human patients. 

Understanding the mechanisms of effective combination therapies and rational 

optimization of future therapies will require testing in a pre-clinical animal model 

of BrafV600E-driven melanoma in the setting of an intact immune system. 

 

In order to better understand the mechanisms of action of these combined 

therapies and to better inform future combination therapy clinical trials, I 

measured responses to combined therapies involving PLX4720, anti-CTLA4, 

anti-PDL1, and imiquimod. I hypothesized that effective melanoma treatments 

can be develop using synergistic combination therapies in mouse melanoma 

models. To this end experiments were undertaken using the Braf/Pten/Bcat 

conditional inducible mouse melanoma model to develop combination therapies 

with PLX4720, a tool compound with similar features to vemurafenib, as well as 

immune therapies that include mouse analogues of anti-CTLA4 and/or PD1 

immune checkpoint blockade and/or topical imiquimod. The next step of analysis 

would then be based on the mechanistic insights derived from these mouse 

studies. The purpose of this work was to translate the findings into applications in 

future human clinical trials of combination therapies that result in more frequent 

and more durable responses.  

 

Specific Aims:  

These experiments evaluated the effects of combinations of PLX4720 Braf 
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Inhibitor chow, 5% topical imiquimod, and Anti-CTLA-4/Anti-PD-L1 treatments on 

Bcat/Braf/Pten mouse melanoma’s overall tumor size and survival (as measures 

by an endpoint of 2 cm3). The treated mice were followed for up to a maximum of 

an additional 90 days post treatment. Significant effects on overall survival will be 

determined using Kaplan-Meier survival curves and the log-rank statistic.  

Methods: 

The work herein was completed by Billy Lockhart (BJL) unless otherwise noted. 

 

Animal Model 

The mouse colony was maintained at the Yale University School of Medicine 

Animal Facility and the Yale University Animal Care and Use Committee 

approved all animal protocols. In the facility, the mouse colony was maintained 

under normal parameters, including unrestricted access to fresh water and chow, 

frequent bedding changes, and were checked daily by animal facility staff or by 

this author. Mice were housed in cages in a secured room with the lighting set to 

a 12-hour on/off cycle. 

 

All of the mice in this study were obtained from breeding congenic Tyr::CreER 

Pten flox/flox Bcat sta/sta mice with Braf V600E/V600E Pten flox/flox mice from the 

Bosenberg Lab. All strains were on a congenic C57Bl/6 background. Verification 

of the mouse strain genotypes was completed prior to recombinant breeding and 

induction. The Tyr-CreER, Braf, Pten and BCAT mouse strains were genotyped 



www.manaraa.com

	   21	  

	   	   	  

and assayed for recombination as previously described by the Bosenberg Lab 

(41).  

 

For tumor inductions, 4-hydroxytamoxifen (4-OHT) (#H6278, 70% z-isomer from 

Sigma Aldrich) was dissolved in DMSO to a concentration of 50 mg/ml. For 

localized tumor inductions, a mouse was selected at postnatal day 21 and the 

hair between the shoulder blades was removed with a topical depilatory. Next, 

1µL of 4-OHT at 8.3 mg/ml (dissolved in 1 part DMSO and 5 parts 100 percent 

Ethanol) was directly applied to the skin of the mouse in the hairless area.  

 

Tumor measurement and necropsy methodology: 

The mice were monitored daily for health status and tumor growth. Tumor size 

was captured using a digital caliper measuring three dimensions of the length (L), 

the width (W), and the height (H). The tumors were measured every 7 to 10 days. 

The volume of the tumor was calculated using a formula for the volume of a half 

sphere: 0.523598×L×W×H. If mice developed secondary tumors, the initial tumor 

was designated as the primary tumor and was measured separately from any 

other latent tumor development, which were subsequently labeled by ordinal 

number, i.e. 2nd, 3rd , etc.; in the end only primary tumors were included in 

analysis.  

 



www.manaraa.com

	   22	  

	   	   	  

Tumor endpoints were establish by animal protocol as tumor volume as 1 cm3 or 

ulcerated tumors, or marked decompensating in animal’s health status (severe 

weight loss, markedly decreased movement, inability to self-care). For these 

experiments, the tumor volume endpoint was approved up to 2 cm3. Mice were 

anesthetized and sacrificed according to Yale University Animal Care and Use 

Committee protocols. Tumors were resected and samples for genetic analysis 

were frozen in -80 C or were stored in formalin and sent for slide preparation in 

the Yale Dermatopathology Department for later immunohistochemical 

processing. 

 

Treatments 

 

Male mice were selected at weaning and rechecked at outset of the treatment. 

The mouse’s treatment cohort was randomly selected, and the experimenter, this 

author, was aware of the treatment group of each cohort and administered all 

drugs. Mice were candidates for inclusion if their primary tumor size was between 

2-6 mm in length or width or 1.5 mm in height, usually ~3 weeks after induction. 

Mouse IgG2b Anti-murine CTLA-4 (clone 9D9) and Rat IgG2b Anti-Mouse PDL-1 

(clone 10F.9G2) were administered via intraperitoneal injection in sterile PBS 

once a week at dosages equivalent to 5 mg/kg according to the mouse’s weight 

at time of administration. The mice that received combination therapy of anti-

CTLA-4 and anti-PD-L-1 (combo) received both intraperitoneal injections on the 
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same day. Both of these antibodies were purchased from BioXCell. The 

Vemurafenib analogue chow, known as PLX4720, was provided to respective 

cohorts as their sole nutrition source (~100mg/kg per day) and was replaced 

weekly; Plexxicon provided the chow to the lab. Imiquimod 5% (generic by 

Fougera) topical cream was administered by small measuring spatula directly to 

the superficial surface of the tumor covering it completely in one layer, 5 days per 

week; the total amount of imiquimod applied was therefore proportional to the 

tumor’s surface area. The mice that received combination therapy of anti-CTLA-4 

and anti-PD-L-1 (combo) received both intraperitoneal injections on the same 

day. Table 1 lists the treatment cohorts. 

Table 1: Treatment Cohorts 

Drug Dosing schedule Dosage (route) 

Anti-CTLA-4 &  

anti-PD-L1 

(combo) 

1x per wk 5mg/kg IP for 

each drug 

PLX4720 chow -  sole food 

source 

~100mg/kg per 

day 

PLX4720 + 

Combo 

1x per wk + chow As above 

Imiquimod 5x week ~25mg (topical) 

Imiquimod plus 

Combo 

5x week + 1x per 

wk 

As above 
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Immunohistochemistry 

IHC was performed on formalin-fixed, paraffin embedded tumor sections. Slides 

were processed using Vectastain ABC –Alkaline Phosphatase kit (Vector, #PK-

5000) and developed with a red alkaline phosphatase substrate kit (Vector, #SK-

5100), according to the manufacturer’s instructions. Responsible investigator: BJL 

with assistance from Katrina Meeth and Goran Micevic. 

 

Antibodies used 

Anti-F4/80 antibody [CI:A3-1] (ab6640) from abcam 

Anti-CD45 antibody (ab10558) from abcam 

 

Statistical Analysis 

Graphpad Prism statistical analysis software was used for all analyses. Kaplan-

Meier survival curves were constructed and significance was determined using 

the log-rank (mantel cox) test.  For comparison of pooled data with two data sets 

unpaired t-test were used. 

 

Results:  

A cohort of 7 untreated male Brafwt/V600E Pten-/- Bcatstab/stab mice from two different 

litters had tumors induced on day 22. The Tumor growth was tracked over four 

months until the tumor sized reached endpoint of 2 cm3. Figure 1 shows the 

measurements of tumor volume over this period of time.  
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Figure 1: Average tumor growth velocity. X-axis represents size of the tumor in millimeters cubed 

and y-axis represents day since birth. 7 untreated male mice with tumors induced on day 22, 

where were recorded over a period of 4 months. Using Excel software, a best fit line was 

calculated for each line and the resulting functions where used to calculate a trend line at precise 

10 day intervals. Each different symbol represents a unique animal’s tumor growth curve. 

 

The chart shows the range of tumor size at various time points, and the trend line 

provides a rough approximation of when the average tumor size at various points 

in time. By this calculation, the trend line shows that a given tumor’s volume 

would most likely reach 1 cm3 in approximately 76 days post-induction, and the 
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0	  

500	  

1000	  

1500	  

2000	  

2500	  

0	   20	   40	   60	   80	   100	   120	   140	  



www.manaraa.com

	   26	  

	   	   	  

same tumor would reach 2cm3 volume in 90 days. The fastest growing tumors in 

this cohort grew to 1cm3 in ~52 days and the slowest grew to 1cm3 in ~100 days. 

 

 

 

Figure 2: Kaplan-Meier analysis of Brafwt/V600E Pten-/- Bcatstab/stab mice that received Plx4720 chow 

(n=6) and those mice that received no treatment (n=7) starting 3 weeks post induction (day 45) of 

melanomas. 

 

The 6 animals treated with the PLX4720 received their treatment continuously, as 

past experience indicated that after stopping the chow tumor growth would re-

start. The survival curve in figure 2 shows the difference in survival past 100 

days. For animals not receiving treatment medial length of survival was ~100 

days. PLX4720 treated cohort did not reach median survival point. There is a 

significant difference in time to endpoint when the Brafwt/V600E Pten-/- Bcatstab/stab 

mice received Braf inhibitor therapy versus controls (p=0.0051). 
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Figure 3: Kaplan-Meier analysis comparing percent survival of Brafwt/V600E Pten-/- Bcatstab/stab mice 

treated with the Braf inhibitor Plx4720 chow (n=6), the treatment arm receiving weekly combined 

Anti-CTLA-4/Anti-PD-L1 treatment (n=6), and those with no treatment (n=7) starting 3 weeks post 

induction (day 45) of melanomas. 

 

The treatment arm (n=6) receiving combination immune checkpoint point 

blockade antibodies, anti-CTLA-4 and anti-PD-L1, did not vary significantly from 

controls in terms of time to endpoint, i.e. survival (p=0.77). Figure 3 compares 

both the survival percentage of the combination checkpoint blockade group and 

Braf inhibitor group (plx4720) to untreated controls with induced tumors. 

Additionally, a cohort of mice (n=4) received the two checkpoint blockade 

antibodies in addition to chow with PLX4720 (Figure 4). The percent survival of 

this cohort differed significantly from the untreated group (p=0.42), but this 

difference is attenuated when comparing this treatment group to the mice that 
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received the PLX4720 Braf inhibitor chow only (Figure 5); when compared to Braf 

inhibition alone, there was not a significant different in overall percentage survival 

(Figure 5). 

 

 

Figure 4: Kaplan-Meier analysis comparing percent survival of Brafwt/V600E Pten-/- Bcatstab/stab mice 

treated with the Braf inhibitor Plx4720 chow in addition to Anti-CTLA-4 and Anti-PD-L1 (n=4), and 

those with no treatment (n=7) starting 3 weeks post induction (day 45) of melanomas. 
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Figure 5: Kaplan-Meier analysis comparing percent survival of Brafwt/V600E Pten-/- Bcatstab/stab mice 

treated with the Braf inhibitor Plx4720 chow in addition to Anti-CTLA-4 and Anti-PD-L1 (n=4), as 

compared to the percent survival of the group treated only with Plx4720 (n=6) starting 3 weeks 

post induction (day 45) of melanomas. 

 

 

Figure 6: Unpaired t-test analysis comparing mean tumor volume (mm3) per treatment cohort at 

approximate day 60 (5.4 weeks of treatment) and day 120 (14 wks of treatment). 
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A                  B 

 

Figure 7. A) An unpaired comparison analysis of the individual tumor volumes (mm3) in the 

plx4720 only versus plx4720 plus combination immune checkpoint blockade antibodies at d60, 

~38 days post induction. Panel B shows the same analysis done with tumor volumes at d120, 

~98 days post induction. 

 

 

Figure 6 depicts results of statistical comparison between the mean tumor size at 

early and late time points for each treatment arm (PLX4720 alone, with Anti-

CTLA-4/Anti-PD-L1, and controls). The difference in tumor size when comparing 

the two treatment arms was not significant at either time point. Figure 7A and 7B 

shows a similar analysis with the spread of tumors sizes for the two treatment 

arms at the respective time points.  
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Figure 9: Brafwt/V600E Pten-/- Bcatstab/stab mice (n=6) were treated with 5% topical imiquimod and 

their mean tumor volumes (mm3) were compared 45 days post induction to a group of control 

mice (n=6) with untreated tumors. This experiment was completed by Katrina Meeth 

 

Imiquimod demonstrated a significant effect on the inhibition of tumor volume 

(mm3) in mice (n=6) after 4 weeks of treatment when compared to untreated 

control mice with induced melanomas (n=6) (Figure 9). When imiquimod was 

applied to tumors and the treated mice were administered the combination anti-

CTLA4/anti-PDLI (Figure 10, 11), the treatment was highly effective in retarding 

tumor growth. 

      11 
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Figure 10: Brafwt/V600E Pten-/- Bcatstab/stab mice (n=5) were treated with 5% topical imiquimod and 

combination Anti-CTLA-4/Anti-PD-L1 and their mean tumor volumes (mm3) were compared to a 

group of control mice (n=6) with untreated tumors at day 77. Figure 11: the same imiquimod 

treatment cohort compared to a plx4720 cohort (n=6) at day 60. 

 

Untreated F4/80 staining       Imiquimod tx’d F4/80 stained 

	   	    

Untreated CD45 staining       Imiquimod tx’d CD45 stained 

	   	    

Figure 12: Immunohistochemical staining of tumor samples taken from untreated Brafwt/V600E Pten-

/- Bcatstab/stab mouse tumors compared to imiquimod treated tumors. The top row shows staining 

for F4/80 and the bottom row show staining for CD45. 
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Samples from imiquimod treated tumors were embedded and sectioned for 

histology. Immunohistochemical assays demonstrated that treated tumors had a 

increased F4/80 staining increased CD45 staining (Figure 12 Additional results 

from preliminary, but not fully validate, immunohistochemistry suggest that CD3 

staining in these imiquimod treated samples appears to be decreased.  

 

Discussion: 

 

This worked examined various combinations of cancer drugs in a preclinical 

mouse model. The mouse model offers many advantages; particularly as it has 

been genetically engineered to share driver mutations identical to human 

melanomas and the mouse maintain their native, intact immune system. In these 

therapeutic trails, the primary endpoints were directly measured, and only this 

author measured the tumor dimensions to avoid inter-operator variability.  

 

During the initial pilot phases of these experiments, a measurement optimization 

was undertaken by using triplicate measurements by the same observer 

averaging the values to ensure best possible accuracy and to established rough 

parameters for measurement error (estimated at +/- 1mm for any given 

dimension measurement). The spread of the tumors sizes for given time points 

are quite large, and their growth curve velocity can differ significantly. This large 

spread has implications on the detection of difference in tumor response (Figure 
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1).	  Previous experimenters working on the same model assessed tumor 

dimensions bi-weekly. However, considering the initially slower pace of tumor 

growth after induction (Figure 1), bi-weekly measurements were deemed to 

easily fall within the +/- 1mm error range, and as such the tumors measurements 

were spaced out to every 7 to 10 days for these trials in order to better capture 

actual changes in tumor size. Furthermore, variability in the growth 

characteristics of a given tumor, including growth rate and shape, and this lack of 

uniformity in tumor physical characteristics were in part due to the difficulty in 

administering the 4-hydroxy-tamoxifen due to uneven spread of the liquid over 

the non-flat surface of the animal’s hind quarters and the rapid evaporation rate. 

Previous experiments in the lab established that less spread produced a smaller 

initial induction area and a tumor with decreased growth velocity when compared 

to larger spread/larger induction areas (44). Initial attempts to optimize this 

induction procedure were tried, including injection of induction material 

intradermal as well as subcutaneously, but the piloted results were not 

adequately consistent. Larger sample sizes may have improved the statistical 

comparisons and in future iterations of these trials in this system; these 

observation supports using more animals per treatment arm. 

 

Another possible explanation for growth velocity variation may have to do with 

uncharacterized genetic factors. Note that un-induced mice have a 20-25% 

chance of developing spontaneous melanomas within 6 months in the absence of 
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4-OHT induction, an observation attributed to “leaky” Cre expression. In this 

author’s experience, these spontaneous tumors are unpigmented, uninodular, 

and dermal and can appear at any surface point of the affected mouse. Once 

they appear, these tumors grow quite rapidly.  

 

Experimental data at present suggests that anti-CTLA-4 therapy is not better than 

control in the Braf/Pten/Bcat mouse model. Similarly, neither single agent anti-

PD-L1, nor the combination of the two antibodies appears to effect survival 

significantly versus controls (figure 3). The results of the trial testing BRAF 

inhibition in combination with anti-CTLA-4/anti-PD-L1 have not yielded significant 

results to date (figure 5). This begs the interesting question: why? Are the mouse 

analogues of the human antibodies not as effective at inhibiting their target? Mice 

lacking CTLA-4 die at an age of 2–3 weeks secondary to massive 

lymphoproliferation (45), clearly the protein plays a significant role in down-

regulating the immune system in mice. In 1995, Kearney et al showed that 

blocking CTLA-4 in mice greatly enhanced antigen specific clonal expansion, but 

those experiments used a specially engineered antibody in a Fab form “as 

described by Wassau” (46). Severe immune side effects in human patients on 

anti-CTLA-4 therapy have been documented (22), yet no severe side effects 

where noted in these trials (5mg) or in previous trials in the labs at twice the dose 

(10mg/kg the highest dose given) in humans during phase II trials. Furthermore 

animals were dosed weekly as opposed to every third week. A future experiment 

designed such that multiple mouse anti-CTLA-4 sourced from different 
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manufacturers is administered in increasing doses until side effects are observed 

may help characterize how the mouse immune system responds to the anti-body. 

Or perhaps the Wassau method should be resumed for anti-CTLA-4 antibody 

production.  

 

Another compelling difference between the mouse model and human melanomas 

is how few mutations they posses – melanomas are know to contain a relatively 

high numbers of mutations and also to be relatively antigenic (2). The three 

induced mutations in the model suffice for melanoma growth but may be sub-

threshold to activate the immune system’s surveillance. It’s worth noting that that 

when immune checkpoint inhibitors are administered to humans in clinical trails a 

substantial fraction have no response, as high as ~85%.  

 

It is possible that specific genetic drivers of melanoma and other cancers can be 

associated with induction of an immunosuppressive tumor microenvironment. In 

unpublished work from the Gajewski lab at the University of Chicago, it appears 

that the Braf/Pten/Cnntb1 model induces potent local tumor microenvironment 

immunosuppression compared to the Braf/Pten model. These findings may 

indicate the reason for the relative lack of effect of the combined anti-CTLA-4 and 

anti-PD-L1 therapy in the Braf/Pten/Cnntb1 model. 
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As had been supported by prior experiments, results from treatment cohorts of 

mice receiving the Braf inhibitor chow, PLX4720, demonstrated that the drug 

effectively inhibits tumor growth for the life of the animal as long as the treatment 

is continued. Adding Anti-CTLA-4 and Anti-PD-L1 offered no significant benefit in 

efficacy (figure 5). A human trial that combined vemurafenib and ipilimumab was 

stopped due to toxicity when the drugs were used in combination (47), an effect 

not noted in the combination trial in the mouse model. A recent collaboration 

between the Bosenberg and Kaech laboratories established that T-cells are 

involved in the Braf-inhibitors mechanism of growth suppression (48). However, 

based on preliminary analysis of mouse melanoma responses to PLX4720, 

induction of apoptotic cell death is minimal. Therefore it is possible, that PLX4720 

treatment alone may be insufficient to generate effective immune responses in 

combination with anti-CTLA4 and/or PD1 pathway inhibition.  

 

Another difference between these trials and the standard of care in humans is 

surgical excision. Humans usually present with a primary melanoma on the skin, 

which is subsequently almost always surgically removed; the administration of 

systemic agents is reserved for metastatic disease. Does post-surgical excision 

wound healing alter the tumor microenvironment in ways fundamental to 

generating a more effective T-cell response to melanoma cells? Is cell death a 

prerequisite to step to activating a T-cell response that can be further enhanced 

by immune checkpoint blocking antibodies? Laura Huang, this author’s 
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predecessor in the Bosenberg lab, has performed experiments administering a 

brief pulse of treatment with a cytotoxic agent (temozolomide) before initiation of 

immune therapies in established tumors results in minor improvements in survival 

of treated mice, but her data show the median end points are identical between 

chemotherapy alone or with anti-CTLA-4 therapy(44). Several pilot experiments 

in which tumor bearing mice receiving treatment has tumors directly injected with 

cytotoxic agents or inoculation with cultured melanoma cell lines that had been 

lysed did not result in encouraging results (unpublished data). 

 

Treatment with 5% topical Imiquimod significantly retards tumor growth and 

thereby increases time to end point in this model (figures 10,11). Imiquimod 

causes visible inflammation at application site, massive splenomegaly, and 

weight loss when applied at high doses in this mouse model, according to 

previous work by Katrina Meeth. At the doses used in these experiments, no 

such side effects were noted. Perhaps higher doses of imiquimod combined with 

immune checkpoint blocking agents would provide the impetus for an effective 

immune response. Immune cell infiltrate characterization of treated tumor 

samples reveals increased macrophage subsets. Preliminary FACS analysis of 

imiquimod treated samples does not yet show a consistent pattern of increased T 

cell populations. RNA Seq Gene expression analysis could yield interesting leads 

to follow up in future experiments that would in form ongoing and future human 
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clinical trials involving these agents and are likely to be critical to the success of 

the proposed experiments.  
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